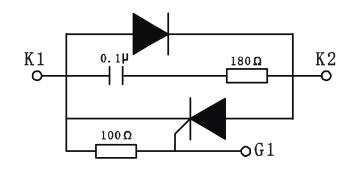

南岸普力晶闸管模块说明书

北京南岸普力自动化科技有限公司是专业生产固态继电器和晶闸管模块的厂家,采用进口芯片,引进国际先进的"真空+氢气保护"焊接技术,按国际标准工艺生产,产品性能好,可靠性高。

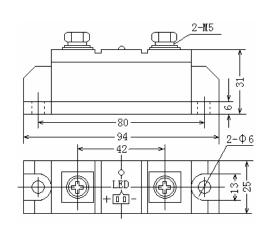
晶闸管模块

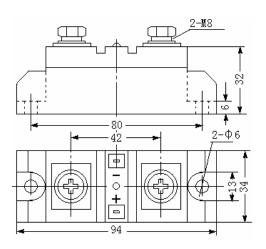
1. 技术参数表:


★ 2 支单硅反并联(右图)

带阻容吸收的MTX反并联模块

参数名称	参数值		测试条件	
通态电流 平均值	55A	90A	$T_{VJ} = T_{VJM}$	
正向电流 平均值	55A	90A	180°导通 正弦半波	
通态电流 有效值	120A	200A		
泊运由法	1150A	1700A	t=10ms t=8.3ms	
浪涌电流	1200A	1800A	$T_J = 45^{\circ}C$ 100 % V_{RRM}	
I^2t	$9100A^2s$	$11860 \mathrm{A}^2\mathrm{s}$	t=10ms t=8.3ms	
	$8830A^2s$	$11300 \mathrm{A}^2\mathrm{s}$	$T_J = 45^{\circ}C$ 100 % V_{RRM}	
断态漏电流	10mA		T _J =125℃,门极开路	
反向重复峰值电压	800~1800V		125℃ I _{RRM} ; I _{DRM} =10mA	
断态重复峰值电压			门极开路	
峰值通态电压(MAX)	_1.57V	1.077	$I_{TM} = \pi I_{TAV}; I_{FM} = \pi I_{FAV}$	
峰值正向电压(MAX)	≤1.57V	1.6V	T _J =25℃, 180° 导通	
通大山达上11·安	150A/ μ s		$T_J=25$ °C, 0.67 V_{DRM} , $I_g=500mA$	
通态电流上升率			$Tr < 0.5 \mu s$, $t_p > 6 \mu s$	
断态电压上升率	500V/ μ s		T _J =125℃, 0.67V _{DRM} , 门极开路	
维持电流	200mA		T _J =25℃,阳极电压=6v 阻性,门极开 路	
<u>擎</u> 柱电流	400mA		T _J =25℃,阳极电压=6v,阻性负载	
门极峰值功率	10W			
门极峰值电流	2.5A			
门极触发电压	≤1.5V			
门极触发电流	≤100mA		T _J =25℃,阳极电压=6v,阻性负载	
绝缘电压	2500V		50Hz 电路对基板,接线端短接 t=1s	
工作结温	-40~125℃			
储存温度				
结壳热阻	0.25℃/W	0.15℃/W	每个模块 直流	
接触热阻	0.1°C/W			
基板/散热器			导热垫	
重量	150g			
外形尺寸	94×25×38mm			
外形颜色	黑			


★ 硅、二极管反并联(右图)



带阻容吸收的MFX半控桥模块

参数名称	参数值		测试条件		
通态电流 平均值	120A	180A	$T_{VJ} = T_{VJM}$		
正向电流 平均值	120A	180A	180°导通 正弦半波		
通态电流 有效值	260A	400A			
浪涌电流	3200A	5100A	t=10ms t=8.3ms		
	3650A	5400A	$T_J = 45^{\circ}C$ 100 % V_{RRM}		
I ² t	$51KA^2s$	$130 \text{K A}^2 \text{s}$	t=10ms $t=8.3ms$		
	$47KA^2s$	$120K A^2s$	$T_J = 45^{\circ}C$ 100 % V_{RRM}		
断态漏电流	10mA		T _J =125℃,门极开路		
反向重复峰值电压	800~1800V		$125^{\circ}\text{C} I_{RRM}; I_{DRM} = 10\text{mA}$		
断态重复峰值电压	300~1300 V	<u>, </u>	门极开路		
峰值通态电压(MAX)	1.6V	1.9V	$I_{TM} = \pi I_{TAV}; I_{FM} = \pi I_{FAV}$		
峰值正向电压(MAX)	1.0 V	1.9 V	T _J =25℃, 180° 导通		
通态电流上升率	150A/ μ s		$T_J=25$ °C, $0.67V_{DRM}$, $I_g=500mA$		
			$Tr<0.5 \mu s$, $t_p>6 \mu s$		
断态电压上升率	500V/μs		T _J =125℃,0.67V _{DRM} ,门极开路		
 维持电流	200mA		T _J =25℃,阳极电压=6v 阻性,门极开		
年17 电机			路		
擎柱电流	400mA		T _J =25℃,阳极电压=6v,阻性负载		
门极峰值功率	120W		$T_J = T_{JM}$, $I_T = I_{TAV}$, $T_P = 30 \ \mu \ s$		
门极触发电压	≤2V ≤100mA		T _J =25℃,阳极电压=6v,阻性负载		
门极触发电流					
绝缘电压	2500V		50Hz 电路对基板,接线端短接 t=1s		
工作结温	-40~125℃				
储存温度					
结壳热阻	0.12°C/W	0.11°C/W	每个模块 直流		
接触热阻	0.07°C/W		导热垫		
基板/散热器			カッパ主		
重量	362g				
外形尺寸	94×35×38mm				
外形颜色	黑				

南岸普力晶闸管模块外形尺寸图

晶闸管模块型号列表

名称	型号	参	数	外形尺寸
	MTX/MFX25	25A	1200V	94×25×38, 孔距 80
	MTX/MFX55	55A	1200V	94×25×38, 孔距 80
MTX	MTX/MFX90	90A	1200V	94×25×38, 孔距 80
两个单硅反并联模块	MTX/MFX120	120A	1200V	94×35×38, 孔距 80
	MTX/MFX130	130A	1200V	94×35×38, 孔距 80
MFX	MTX/MFX160	160A	1200V	94×35×38, 孔距 80
硅、二极管反并联模块	MTX/MFX180	180A	1200V	94×35×38, 孔距 80
	MTX/MFX250	250A	1200V	115×53×52, 孔距 80×38
	MTX/MFX350	350A	1200V	126×63×56, 孔距 93×48

北京南岸普力自动化科技有限公司

电话: 010-62558932 82612319 82610306 传真: 010-62613784 地址:北京市海淀区苏州街 33 号 1504 室 邮编: 100080

网址: www.narpuli.cn E-mail: npl@narpuli.cn